MICROWAVE OVEN SERVICE MANUAL

MODEL: MV-1715W MV-1715B MV-1725W MV-1725B MV1735W MV1735B

CAUTION

BEFORE SERVICING THE UNIT, READ THE
SAFETY PRECAUTIONS IN THIS MANUAL.

CAUTION

SAFETY PRECAUTIONS

PRECAUTIONS TO BE OBSERVED BEFORE AND DURING SERVICING TO AVOID POSSIBLE EXPOSURE TO EXCESSIVE MICROWAVE ENERGY

a. Do not operate or allow the oven to be operated with the door open.
b. Make the following safety checks on all ovens to be serviced before activating the magnetron or other microwave source, and make repairs as necessary; (1) Interlock operation, (2) proper door closing, (3) seal and sealing surfaces (arcing, wear, and other damage), (4) damage to or loosening of hinges and latches, (5) evidence of dropping or abuse.
c. Before turning on microwave power for any service test or inspection within the microwave generating compartments, check the magnetron, wave guide or transmission line, and cavity for proper alignment, integrity, and connections.
d. Any defective or misadjusted components in the interlock, monitor, door seal, and microwave generation and transmission systems shall be repaired, replaced, or adjusted by procedures described in this manual before the oven is released to the owner.
e. A Microwave leakage check to verify compliance with the Federal Performance Standard should be performed on each oven prior to release to the owner.

- Proper operation of the microwave ovens requires that the magnetron be assembled to the wave guide and cavity. Never operate the magnetron unless it is properly installed.
- Be sure that the magnetron gasket is properly installed around the dome of the tube whenever installing the magnetron.
- Routine service safety procedures should be exercised at all times.
- Untrained personnel should not attempt service without a thorough review of the test procedures and safety information contained in this manual.

FOREWORD

Read this Manual carefully. Failure to adhere to or observe the information in this Manual may result in exposing yourself to the Microwave Energy normally contained within the oven cavity.

TABLE OF CONTENTS

(Page)
SAFETY PRECAUTIONS Inside front page
SPECIFICATIONS 1-1
CAUTIONS 2-1
INSTALLATIONS 3-1
OPERATING INSTRUCTIONS 4-1
CONTROL PANEL 4-1
CONTROL PANEL INSTRUCTIONS 4-2
OVERALL CIRCUIT DIAGRAM 5-1
SCHEMATIC DIAGRAM 5-1
MATRIX CIRCUIT FOR TOUCH KEY BOARD 5-2
GENERAL INFORMATION FOR SERVICE 6-1
GENERAL PRECAUTIONS IN USE 6-1
TRIAL OPERATION 6-1
FEATURES AND SPECIFICATIONS FEATURES 6-1
SERVICE INFORMATION 7-1
PRECAUTIONS AND REPAIR SERVICE TIPS 7-1
micRowave leakage TEST 7-2
POWER OUTPUT MEASUREMENT 7-3
DISASSEMBLY INSTRUCTIONS 7-4
INTERLOCK SYSTEM 7-12
INTERLOCK CONTINUITY TEST 7-14
TEST AND CHECKOUT PROCEDURES AND TROUBLE SHOOTING 7-15
A. TEST PROCEDURES 7-15
B. CHECKOUT PROCEDURES 7-18
C. TROUBLE SHOOTING 7-21
EXPLODED VIEW 8-1
REPLACEMENT PARTS LIST 8-8
SCHEMATIC DIAGRAM OF PCB 8-10
PRINTED CIRCUIT BOARD 8-11
PCB PARTS LIST 8-12

SPECIFICATIONS

Rated Power Consumption Microwave Output	1,500W maximum (Microwave oven only)
	1000W (IEC 60 705)
	Adjustable 100W through 1000W, 10 steps
Frequency	$2,450 \mathrm{MHz} \pm 50 \mathrm{MHz}$
Power Supply	120 VAC, 60 Hz
Rated Current	13 Amp. (Microwave oven+Cook top lamps+Ventilation fan)
Magnetron Cooling	Forced Air Cooling
Rectification	Rectification Voltage Double Half-Wave
Door Sealing	Choke System
Safety Devices	Magnetron Thermal Fuse: Open at $109^{\circ} \mathrm{C} \pm 4^{\circ} \mathrm{C}$
	Oven Cavity Thermostat: Open at $110^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
	Fuse(20A)
	Primary Interlock Switch
	Secondary Interlock Switch
	Interlock Monitor
Magnetron	2M246-050GF or 2M248J
High Voltage Capacitor	Capacitor: $1.0 \mu \mathrm{~F}, 2.1 \mathrm{KV}$ AC
High Voltage Diode	Diode; 350mA, 9.0 KV
Cook top Lamp	$125 \mathrm{~V}, 30 \mathrm{~W}$ or 40 W
Cavity Lamp	125 V, 30 W
Timer	Digital, up to 99 mim .99 sec . (in each cooking stage)
Tray	Tempered Safety Glass
Overall Dimensions	2915/16" ${ }^{\prime \prime}$ W) x $16^{7 / 166^{\prime \prime}}$ (D) $\times 15^{1 / 2} 2^{\prime \prime}(\mathrm{H})$
Effective Capacity of Oven Cavity	1.7 Cu.ft.
Accessories	Owner's Manual \& Cooking Guide, Installation Manual, Exhaust Adapter, Exhaust Damper, Mounting Kit and Two Filters, Rotating Ring Assembly, Metal Rack.

CAUTIONS

Unlike other appliances, the microwave oven is high-voltage and high-current equipment. Though it is free from danger in ordinary use, extreme care should be taken during repair.

- DO NOT operate on a 2-wire extension cord during repair and use.
- NEVER TOUCH any oven components or wiring during operation.
- BEFORE TOUCHING any parts of the oven, always remove the power plug from the outlet.
- For about 30 seconds after the oven stops, an electric charge remains in the high voltage capacitor. When replacing or checking, you must discharge the high voltage capacitor by shorting across the two terminals with an insulated screwdriver.

- Remove your watches whenever working close to or replacing the Magnetron.
- DO NOT touch any parts of the control panel circuit. A resulting static electric discharge may damage this P.C.B.
- NEVER operate the oven with no load.
- NEVER injure the door seal and front plate of the oven cavity.
- NEVER put iron tools on the magnetron.
- NEVER put anything into the latch hole and the interlock switches area.

MICROWAVE RADIATION

Personnel should not be exposed to the microwave energy which may radiate from the magnetron or other microwave generating device if it is improperly used or connection. All input and output microwave connections, waveguide, flange, and gasket must be secure never operate the device without a microwave energy absorbing load attached.
Never look into an open waveguide or antenna while the device is energized.

- Proper operation of the microwave oven requires that the magnetron be assembled to the waveguide and cavity. Never operate the magnetron unless it is properly installed.
- Be sure that the magnetron gasket is properly installed around the dome of the tube whenever installing the magnetron.

MAGNETRON

THE OVEN IS TO BE SERVICED ONLY BY PROPERLY QUALIFIED SERVICE PERSONNEL.

INSTALLATIONS

BEFORE YOU BEGIN, READ THE FOLLOWING INSTRUCTIONS COMPLETELY AND CAREFULLY.

PRECAUTIONS ON INSTALLATION

A. Plug the power supply cord into a 120 V AC, 60 Hz , single-phase power source with a capacity of 15A or 20A.
B. Avoid placing the unit in a location where there is direct heat or splashing water.
C. Install the unit on the mounting plate firmly.
D. Place the unit as far away as possible from TV, radio, etc. to prevent interference.

GROUNDING INSTRUCTIONS

For personal safety, this appliance must be fully grounded at all times.
In the event of an electrical short circuit, grounding reduces the risk of electrical shock.
The plug must be plugged into an outlet that is properly installed and grounded.

CAUTION

This unit is equipped with a 3 -prong plug for your safety. If the wall outlet is a grounded 3 -hole type, the unit will be grounded automatically.

WARNING

Improper use of the grounding plug can result in a risk of electric shock.
Do not, under any circumstances, cut or remove the third ground prong from the power cord plug.

OPERATING INSTRUCTIONS

CONTROL PANEL

CONTROL PANEL INSTRUCTIONS

1. DISPLAY: The display includes a clock and indicators to tell you time of day, cooking time settings, and cooking functions selected.
2. MORE: Press this pad to add ten seconds of cooking time each time you press it.
3. LESS: Press this pad to subtract ten seconds of cooking time each time you press it.
4. CLOCK(TIME OF DAY): Press this pad to enter the time of day.
5. HELP: Press this pad to learn how to use each oven function.
6. ONE TOUCH CONTROL: Press these keys let you cook foods easily.
7. NUMBER: Press number pads to enter cooking time, power level, quantities, or weights.
8. POWER LEVEL: Press this pad to select a cooking power level.
9. TIME COOK: Press this pad followed by Numper Pads to set a cooking time.
10. STOP/CLEAR: Press this pad to stop the oven or to clear all entries.
11. START: Press this pad to start a function. If you open the door after oven begins to cook, START again.
12. EZ ON: Press this pad to cook for 30 seconds at 100% power level.
13. CUSTOM SET: Press this pad to change the oven's default settings for sound, clock, display speed, defrost weight, and demo mode operations.
14. HOLD WARM: Press this pad to keep hot, cooked foods safely warm in your microwave oven for up to 99 minutes 99 seconds.
15. AUTO DEFROST: Press this pad to select food type and defrost food by weight.
16. CUSTOM COOK: Press this pad to recall one cooking instruction previously programmed into memory.
17. LIGHT TIMER: Press this pad to set the light timer.
18. KITCHEN TIMER: Press this pad to set the kitchen timer.
19. TURNTABLE ON/OFF: Press this pad to turn off the turntable. OFF will appear in the display.
20. VENT HI/LOW/OFF: Press this pad to turn the fan on or off.
21. LIGHT HI/LOW/OFF: Press this pad to turn on the cooktop/countertop light.

OVERALL CIRCUIT DIAGRAM

SCHEMATIC DIAGRAM

*Note

1. DOOR OPENED \& COOK OFF MODE.
2. BLUE MARK ON LAMP SOCKET MUST BE CONNECTED

TO LIVE PART(BLACK MIRE).
3. ONLY CERTAIN MODELS USE THE ABSOLUTE HUMDITY SENSOR.

WIRE COLORS

SYMBOL	COLOR
WH	WHITE
BK	BLACK
RD	RED
YL	YELOW
PK	PINK
BL	BLUE
BR	BROWN
GN	GREEN
GY	GREY

GENERAL INFORMATION FOR SERVICE

GENERAL PRECAUTIONS IN USE

A. Never operate the unit when it is empty. Operating the oven with no load may shorten the life of the magnetron. Whenever cooking dry foods (dried fish, bread, etc.) or a small amount of food, be sure to put a glass of water into the cooking compartment. The glass turntable may become hot after operating, be careful when touching it.
B. Aluminum foil should be avoided because it will disrupt cooking and may cause arcing. However, small pieces may be used to cover some parts of food to slow the cooking. Any aluminum foil used should never be closer than 2.5 cm to any side wall of the oven.

TRIAL OPERATION

After installation, the following sequences and results should be checked carefully.
A. Put a container filled with water (about 1 liter) into the oven, and close the door tightly.
B. Set cooking time for 10 minutes by touching " 1 " and then " 0 " three times. " $1,0,0,0$ " appears in the display window.
C. Touch the START key. Make sure the cavity light comes on. The unit will begin cooking and the display window will show the time counting down by seconds.
D. After about 5 minutes, make sure the primary interlock switch, the secondary interlock switch and the interlock monitor switch operate properly by opening and closing the door several times. Touch the START key each time the door is closed.
E. Continue operating the unit. Four long beep sound signal is heard when the time is up. The unit will shut off automatically.
F. Confirm the water is hot.
G. Finally, measure the output power according to "POWER OUTPUT MEASUREMENT" on page 7-3.

FEATURES AND SPECIFICATIONS FEATURES

A. The safety systems incorporated in this model are:
(1) Primary interlock switch
(2) Secondary interlock switch
(3) Interlock monitor switch
(4) Choke system
(5) Magnetron thermal fuse
(6) Oven cavity thermostat (Note: This thermostat located on the oven cavity will open and stop the unit from operation only if a high temperature is reached, such as, a fire created by overcooking food.)
B. Any one of 10 power output levels ranging 100 W to 1000W can be selected by the touch control and electronic computer system.

SERVICE INFORMATION

PRECAUTIONS AND REPAIR SERVICE TIPS

PRELIMINARY

A. SINCE NEARLY 2,100 VOLTS EXISTS IN SOME CIRCUITS OF THIS UNIT REPAIRS SHOULD BE CARRIED OUT WITH GREAT CARE.
The filament leads of magnetron carry High Voltage with respect to ground. Extreme caution must be exercised. Never plug the unit into a power source to determine which component is defective in high voltage section.
B. TO AVOID POSSIBLE EXPOSURE TO MICROWAVE ENERGY LEAKAGE, THE FOLLOWING PRECAUTIONS MUST BE TAKEN BEFORE SERVICING.
(1) Before the power is applied:
(a) Make sure the primary interlock switch, the secondary interlock switch and the interlock monitor switch operate properly by opening and closing the door several by opening and closing the door several times.
(b) Make sure the perforated screen and the dielectric choke of the door are correctly and firmly mounted.
(2) After power is applied:
(a) Make sure the interlock switch mechanism is operating properly by opening and closing the door.
(b) Check microwave energy leakage must bebelow the limit of $5 \mathrm{~mW} / \mathrm{cm}^{2}$.
(All service adjustments should be made for minimum microwave energy leakage readings).
(3) Do not operate the unit until it is completely repaired, if any of the following conditions exist. The unit must not be operated.
(a) The door does not close firmly.
(b) The hinge is broken.
(c) The door seal is damaged.
(d) The door is bent or warped, or there is any other visible damage on the unit that may cause microwave energy leakage.
NOTE: Always keep the seal clean.
(e) Make sure that there are no defective parts in the interlock mechanism.
(f) Make sure that there are no detective parts in the microwave generating and transmission assembly (especially waveguide).
(4) The following items should be checked after the unit is repaired:
(a) The interlock monitor switch is connected correctly and firmly.
(b) The magnetron gasket is properly positioned and mounted.
(c) The waveguide and the oven cavity are intact. (no microwave energy leakage)
(d) The door can be properly closed and the safety switches work properly.
(e) The unit must stop when the door is opened or the time is up.

The unit must not be operated with any of the above components removed or by-passed.

CAUTIONS

- Be sure to check microwave leakage prior to servicing the oven if the oven is operative prior to servicing.
- The service personnel should inform the manufacture importer, or assembler of any certified oven unit found to have a microwave emission level in excess of $5 \mathrm{~mW} / \mathrm{cm}^{2}$ and should repair any unit found to have excessive emission levels at no cost to the owner and should ascertain the cause of the excessive leakage. The service personnel should instruct the owner not to use the unit until the oven has been brought into compliance.
- If the oven operates with the door open, the service personnel should:
- Tell the user not to operate the oven.
- Contact the manufacturer and CDRH (Center for Devices and Radiological Health) immediately.
NOTE: Address on CDRH
Office of Compliance(HFZ-312)
Center for Devices and Radiological
Healthe 1390, Piccard Drive,
Rockville. MD 20850
- The service personnel should check all surface and vent openings for microwave leakage.
- Check for microwave leakage after every servicing. The power density of the microwave radiation leakage emitted by the microwave oven should not exceed $4 \mathrm{~mW} / \mathrm{cm}^{2}$. Always start measuring of an unknown field to assure safety for operating personnel from radiation leakage.

MEASURING MICROWAVE ENERGY LEAKAGE

- Pour $275 \pm 15 \mathrm{cc}$ of $20 \pm 5^{\circ} \mathrm{C}\left(68 \pm 9^{\circ} \mathrm{F}\right)$ water in a beaker which is graduated to 600 cc , and place the beaker on the center of the turntable.
- Set the energy leakage monitor to $2,450 \mathrm{MHz}$ and use it following the manufacturer's recommended test procedure to assure correct result.
- When measuring the leakage, always use the 2 -inch $(5 \mathrm{~cm})$ spacer supplied with the probe.
- Operate the oven at its maximum output.
- Measure the microwave radiation using and electromagnetic radiation monitor by holding the probe perpendicular to the surface being measured.

Move probe along shaded area.

////////////////////////////////

Probe scanning speed
Less than $2.5 \mathrm{~cm} / \mathrm{sec}$. ($1 \mathrm{in} / \mathrm{sec}$)

EQUIPMENT

- TESTER (VOLTS-DC, AC, Ohmmeter)
- Microwave survey meter
- Holaday HI-1500

HI-1501

- Narda 8100

8200

- 600 cc non conductive material beaker (glass or plastic), inside diameter: approx. $8.5 \mathrm{~cm}\left(3^{1 / 2} \mathrm{in}\right.$.)
- Glass thermometer: $100^{\circ} \mathrm{C}$ or $212^{\circ} \mathrm{F}$ (1 deg scale)

MEASUREMENT WITH THE OUTER CASE REMOVED

(1) When you replace the magnetron, measure for microwave energy leakage before the outer case is installed and after all necessary components are replaced or adjusted. Special care should be taken in measuring the following parts.

- Around the magnetron
- The waveguide

WARNING: AVOID CONTACTING ANY HIGH VOLTAGE PARTS.

MEASUREMENT WITH A FULLY ASSEMBLED OVEN

(1) After all components, including the outer panels, are fully assembled, measure for microwave energy leakage around the door viewing window, the exhaust opening and air inlet openings.
(2) Microwave energy leakage must not exceed the values prescribed below.
NOTES:
Leakage with the outer panels removed - less than $5 \mathrm{~mW} / \mathrm{cm}^{2}$.
Leakage for a fully assembled oven ("Before the latch switch (primary) is interrupted") with the door in a slightly opened position - less than $2 \mathrm{~mW} / \mathrm{cm}^{2}$.

NOTE WHEN MEASURING

(1) Do not exceed meter full scale deflection.
(2) The test probe must be removed no faster than $1 \mathrm{inch} / \mathrm{sec}(2.5 \mathrm{~cm} / \mathrm{sec})$ along the shaded area, otherwise a false reading may result.
(3) The test probe must be held with the grip portion of the handle. A false reading may result if the operator's hand is between the handle and the probe.
(4) When testing near a corner of the door, keep the probe perpendicular to the surface making sure the probe horizontally along the oven surface, this may possibly cause probe damage.

RECORD KEEPING AND NOTIFICATION AFTER MEASUREMENT

(1) After adjustment and repair of any microwave energy interruption or microwave energy blocking device, record the measured values for future reference. Also enter the information on the service invoice.
(2) Should the microwave energy leakage not be more than $2 \mathrm{~mW} / \mathrm{cm}^{2}$ after determining that all parts are in good condition, functioning properly and genuine replacement parts which are listed in this manual have been used.
(3) At least once a year, have the electromagnetic energy leakage monitor checked for calibration by its manufacturer.

POWER OUTPUT MEASUREMENT

(1) Microwave power output measurement is made with the microwave oven supplied at its rated voltage and operated at its maximum microwave power setting with a load of $(1000 \pm 5) \mathrm{g}$ of potable water.
(2) The water is contained in a cylindrical borosilicate glass vessel having a maximum material thickness of 1/8" (3 mm) and an outside diameter of approximately $7.6^{\prime \prime}$ (190 mm).
(3) The oven and the empty vessel are at ambient temperature prior to the start of the test.
(4) The initial temperature (T1) of the water is $(10 \pm 2)^{\circ} \mathrm{C}$ $\left(50^{\circ} \mathrm{F}\right)$ It is measured immediately before the water is added to the vessel. After addition of the water to the vessel, the load is immediately placed on the center of the turntable which is in the lowest position and the microwave power switched on.
(5) The time T for the temperature of the water to rise by a value $\Delta \mathrm{T}$ of $(10 \pm 2)^{\circ} \mathrm{K}$ is measured, where T is the time in seconds and ΔT is the temperature rise. The initial and final water temperatures are selected so that the maximum difference between the final water temperature and the ambient temperature is $5^{\circ} \mathrm{K}$.
(6) The microwave power output P in watts is calculated from the following formula:

is measured while the microwave generator is operating at full power. Magnetron filament heat-up time is not included. (about 3 sec)
(7) The water is stirred to equalize temperature throughout the vessel, prior to measuring the final water temperature.
(8) Stirring devices and measuring instruments are selected in order to minimize addition or removal of heat.

IMPORTANT NOTES:

UNIT MUST BE DISCONNECTED FROM ELECTRICAL OUTLET WHEN MAKING REPAIRS, REPLACEMENTS, ADJUSTMENTS AND CONTINUITY CHECKS. WAIT AT LEAST ONE MINUTE, UNTIL THE HIGH VOLTAGE CAPACITOR IN THE HIGH VOLTAGE POWER SUPPLY HAS FULLY DISCHARGED.
THE CAPACITOR SHOULD BE DISCHARGED BY USING INSULATED WIRE - I.E. TEST PROBE CONNECTED TO 10K-OHM RESISTOR IN SERIES TO GROUND.
WHEN RECONNECTING THE WIRE LEADS TO ANY PART, MAKE SURE THE WIRING CONNECTIONS AND LEAD COLORS ARE CORRECTLY MATCHED ACCORDING TO THE OVERALL CIRCUIT DIAGRAM. (ESPECIALLY SWITCHES AND HIGH VOLTAGE CIRCUIT.)

A. REMOVING POWER AND CONTROL CIRCUIT BOARD (Figures 1, 2 and 3)

(1) Remove a screw securing the control panel assembly to the oven cavity.
(2) Remove the control panel with pushing it upward.
(3) Remove the three connectors (CN1, CN2) and wire leads (Relay2) from the circuit board.

Figure 1
(4) Remove 3 screws securing the circuit board.

(5) Remove the FPC connector from the terminal socket following "HOW TO REMOVE THE FPC CONNECTOR" on the next page.
(6) Remove the circuit board from the control bracket carefully.

Figure 3

HOW TO REMOVE THE F.P.C. CONNECTOR

Follow the steps below as illustrated in Figures 4 and 5 to remove the F.P.C. connector.
(1) Hold the edges of the plastic fastener with thumb and forefinger.
(Figure 4)
(2) Lift up the lever of the plastic fastener from the terminal socket by lightly pressing the lever end with forefinger.
(Figure 5)
(3) Remove the F.P.C. connector from the terminal socket.

Figure 4

Figure 5

HOW TO INSERT THE F.P.C. CONNECTOR

Follow the steps below as illustrated in Figures 6 and 7 to insert the F.P.C. connector.
(1) Insert the F.P.C. connector into the terminal socket securely with the fingers.
(2) Hold the plastic fastener with thumb and forefinger of the other hand, and push it slowly into the terminal socket. (Figure 6)
NOTE: When reconnecting the F.P.C
connector make sure that the holes on the F.P.C. connector are properly engaged with the hooks on the plastic fastener
(3) Lock the level of the plastic fastener into the hook of the terminal socket securely by releasing the fingers.
(Figure 7)

Figure 6

Figure 7

B. REMOVING THE OUT CASE(Figure 8)

(1) Remove the vent grille by removing two screws securing it to the out case.
(2) Remove two screws securing it to the air duct.
(3) Remove the mounting plate by turning the screws (1 or 2 screws) securing it to the out case.
(4) Remove two screws on the left central edge and one screws on the right central edge of Base plate. Remove the Mount, All from the out case by removing one screw securing it to the out case.
(5) Remove the outcase with disconnecting power cord connector.

Figure 8

C REMOVING THE DOOR INTERLOCK SWITCHES (Figures 9,10)

(1) Disconnect the wire leads from the interlock switches.
(2) Remove two screws securing the Latch Board.
(3) Make necessary replacements and check microwave energy leakage according to "ADJUSTMENT PROCEDURE" on page 7-12.

Figure 9

D. REMOVING MAGNETRON

(Figures 11 Through 13)
(1) Remove the vent grille by loosening two screws. (Figure 11)
(2) Remove the outcase. See page 7-6.
(3) Remove three tap tite screws securing the magnetron to the wave guide.
(4) Remove the magnetron VERY CAREFULLY.

NOTES:

- When removing the magnetron, make sure that its dome does not hit any adjacent parts, or it may be damaged.
- When replacing the magnetron, be sure to install the magnetron gasket in the correct position and be sure that the gasket is in good condition.
- After replacing the magnetron, check for microwave energy leakage with a survey meter Check microwave energy leakage must be below the limit of $5 \mathrm{~mW} / \mathrm{cm}^{2}$. (All service adjustments should be made for minimum microwave energy leakage readings.)

Figure 12

Figure 13

E. REMOVING STIRRER FAN

(Figures 14 and 15)
(1) Remove one rivet ASS' Y securing it to the oven upper plate by using knife blade.
(2) Rotate slightly and pull out the stirrer fan cover.
(3) Remove the stirrer fan.

Figure 15

F. REMOVING DOOR (Figure 16)

(1) Remove the vent grille by two screws securing it to the outcase loosening.
(2) Lift up and draw the door.

NOTES:

- After replacing the door, be sure to check that the primary interlock switch, the secondary interlock switch and the interlock monitor switch is in good operating normally.
- After replacing the door, check for microwave energy leakage with a survey meter. Microwave energy leakage must be below the limit of $5 \mathrm{~mW} / \mathrm{cm}^{2}$. (With a 275 ml water load)

Figure 16

G. DISASSEMBLING DOOR (Figure 17)

(1) Remove the dielectric choke by using knife blade or small screw driver, etc.
(2) Remove two screws securing it to the door handle.

CAUTION: Be careful not to damage door seal plate with the screwdriver.

Figure 17

H. ASSEMBLING DOOR

(1) When mounting the door assembly to the oven assembly, be sure to adjust the door assembly parallel to the chassis. Also adjust so the door has no play between the inner door surface and oven frame assembly. If the door assembly is not mounted properly, microwaves may leak from the clearance between the door and the oven.

I. REMOVING THE VENTILATION MOTOR

(1) Remove the mounting plate by loosening mounting plate screws (1 or 2 screws)
securing it to the back plate.
(See Figure 18)
(2) Remove MOUNT ALL loosening one screw loosening one screw securing the ventilation Motor and back plate. (See Figure 19-a)

Figure 18

Figure 19-a
(3) Carefully pull the ventilation motor ASS'Y out of the microwave oven. (See Figure 19-b)

Figure 19-b

K. REMOVING THE TURNTABLE MOTOR

(1) Remove the turntable.
(2) Remove the turntable shaft VERY CAREFULLY with a slotted screwdriver. (Figure 20)
(3) Remove the base plate by removing 7 screws securing it to the oven cavity. (Figure 21)
(4) Disconnect the leadwire from the turntable motor terminals.
(5) Remove the 2 screws securing the turntable motor to the oven cavity ASS'Y. (Figure 22)

NOTES:

- Remove the leadwire from the turntable motor VERY CAREFULLY.
- Be sure to grasp the connector not the wires when removing.

INTERLOCK MECHANISM

The door lock mechanism is a device which has been specially designed to eliminate completely microwave activity when the door is opened during cooking and thus to prevent the danger resulting from the microwave leakage.

ADJUSTMENT PROCEDURES

To avoid possible exposure to microwave energy leakage, adjust the door latches and interlock switches, using the following procedure.

The Interlock Monitor and Primary Interlock Switch act as the final safety switch protecting the user from microwave energy. The terminals between "COM" and "NC" of the Interlock Monitor must close when the door is opened. After adjusting the Interlock Monitor Switch, make sure that it is correctly connected.
Mounting of the primary/monitor/secondary switches to the latch board.

CHECK THE DOOR LATCH AND SWITCH CLOSING.

NOTE:

The outer cover of the microwave oven is removed.
(1) Set the microwave oven on its side so that you can see the latch board and the switches, as shown in Figure 23-a.
(2) Close the door tightly and check gaps A and B to be sure they are no more than $1 / 64^{\prime \prime}(0.5 \mathrm{~mm})$. See Figure 23-b for close-up view of gaps A and B (door latches). If all gaps are less than $1 / 64$ " (0.5 mm), adjustment of the latch board may not be necessary. Go to Steps 5 and 6 to check the sequence of the switches.

NOTE:

To correct sequence of the Primary Interlock Switch, Secondary Interlock Switch and the Interlock Monitor Switch is very important.
If any gap is larger than $1 / 64$ " (0.5 mm), you will need to adjust the latch board". Go to step 3 and follow all steps in order.

ADJUST THE LATCH AND SWITCH CLOSING

(3) Loosen the two screws holding the plastic latch board as shown.
(4) With the oven door closed tightly, move the latch board upward toward the top of the oven and/or away from the door latch until the gaps are less than 1/64" (0.5 mm).
Hold the latch board tightly in this position until you check the sequence of the switches in steps 5 and 6 .

TEST THE LATCH AND SWITCH SEQUENCE

(5) Open the oven door slowly. Watch the door latch, the Secondary Switch. Release Rod and Lever on the switches to make sure they are zero to the body of the switches in the following sequence:

- Primary Interlock Switch
- Secondary Interlock Switch
- Interlock Monitor Switch

Adjust the latch board until the switches operate in this sequence. See Steps 3 and 4.
(6) Close the oven door slowly and be sure it is tightly closed. Watch the three switches to make sure they are zero to the body of the switches in the following sequence:

- Interlock Monitor Switch
- Primary Interlock Switch
- Secondary Interlock Switch

NOTE: The Interlock Monitor Switch is an added safety check on the Primary and Secondary Interlock Switches. If the Primary and Secondary Interlock Switches allow the oven to operate with the door open, the Monitor Switch will blow the fuse.
(7) When you achieve the proper sequence of switches in Steps 5 and 6, tighten the latch board screws at that point.

TEST THE MICROWAVE ENERGY LEAKAGE

Make sure the microwave energy leakage is below the limit of $1 \mathrm{~mW} / \mathrm{cm}^{2}$ (with a 275 ml water load) and $5 \mathrm{~mW} / \mathrm{cm}^{2}$ (with a 275 ml water load without the cabinet) when measured with a survey meter.

A. PRIMARY INTERLOCK SWITCH TEST

When the door is opened slowly, an audible click should be heard at the same time or successively at intervals and the latches should activate the switches with an audible click.
If the latches do not activate the switches when the door is closed, the switches should be a adjusted in accordance with the adjustment procedure. Disconnect the wire lead from the primary switch. Connect the ohmmeter leads to the common (COM) and normally open (NO) terminal of the switch. The meter should indicate an open circuit in the door open condition.
When the door is closed, the meter should indicate a closed circuit.
When the primary switch operation is abnormal, make the necessary adjustment or replace the switch only with the same type of switch.

B. SECONDARY INTERLOCK SWITCH TEST

Disconnect the wire lead from the secondary switch.
Connect the ohmmeter leads to the common (COM) and normally open (NO) terminals of the switch. The meter should indicate a open circuit in the door open condition. When the door is closed, meter should indicate an closed circuit. When the secondary switch operation is abnormal, make the necessary adjustment or replace the switch only with the same type of switch.

C. MONITOR SWITCH TEST

Disconnect the wire lead from the monitor switch. Connect the ohmmeter leads to the common (COM) and normally closed (NC) terminals of the switch. The meter should indicate closed circuit in the door open condition. When the door is closed, meter should indicate an open circuit. When the monitor switch operation is abnormal, replace with the same type of switch.
NOTE: After repairing the door or the interlock system, it is necessary to do this continuity test before operating the oven.

COMPONENTS	TEST PROCEDURE		RESULTS			
SWITCHES (Wire leads removed)	Check for continuity of the switch with an Ohm-meter	Door closed				
	Primary Switch					
Sonitor						
Switch						
Switch					,$~$	NOTE : After checking for the continuity of switches, make sure that they are
:---						
connected correctly.						

WARNING : FOR CONTINUED PROTECTION AGAINST EXCESSIVE RADIATION EMISSION, REPLACE ONLY WITH IDENTICAL REPLACEMENT PARTS.

TEST AND CHECKOUT PROCEDURES, AND TROUBLE SHOOTING

- CAUTIONS .

- DISCONNECT THE POWER SUPPLY CORD FROM THE WALL OUTLET WHENEVER REMOVINGING THE CABINET FROM THE UNIT. PROCEED WITH THE TESTS ONLY AFTER DISCHARGING THE HIGH VOLTAGE CAPACITOR AND REMOVING THE WIRE LEADS FROM THE PRIMARY WINDING OF THE HIGH VOLTAGE TRANSFORMER. (SEE FIGURE 24)
- ALL OPERATIONAL CHECKS WITH MICROWAVE ENERGY MUST BE DONE WITH A LOAD (1 LITER OF WATER IN CONTAINER) IN THE OVEN.

Figure 24

A. TEST PROCEDURES

COMPONENTS	TEST PROCEDURES	RESULTS
MAGNETRON (Wire leads are removed)	1) Measure the resistance: Across the filament terminals of the magnetron with an ohm-meter on Rx1 scale. 2) Measure the resistance: Between each filament terminal of the magnetron and the chassis ground with an ohm-mater on high test scale.	Normal reading: Less than 1 ohm. Normal reading: Infinite ohms. NOTE: Replace the magnetron, if the magnetron checks and all of the high voltage component tests are good, but the unit still does not heat a load.
HIGH-VOLTAGE TRANSFORMER (Wire leads are removed)	1) Measure the resistance: With an ohm-meter on Rx1 scale. a. Primary winding; b. Filament winding; c. Secondary winding; 2) Measure the resistance: With an ohm-meter on highest scale. a. Primary winding to ground; b. Filament winding to ground;	Normal readings: Approx. 0.2 to 0.5 ohm. Less than 0.1 ohm. Approx. 50 to 120 ohms. Normal readings: Infinite ohms. Infinite ohms.

NOTE: A MICROWAVE ENERGY LEAKAGE TEST MUST ALWAYS BE PERFORMED WHEN THE UNIT IS SERVICED FOR ANY REASON.

COMPONENTS	TEST PROCEDURES	RESULTS
HIGH-VOLTAGE CAPACITOR	Measure the resistance: (1) Terminal to terminal Ohmmeter Figure 25-a	Normal reading: Momentarily indicates several ohms, and then gradually returns to infinite ohms. Abnormal reading: Indicates continuity or infinite ohms from the beginning.
	(2) Terminal to case Ohmmeter Figure 25-b	Normal readings: Infinite. Abnormal reading: Indicates continuity.
HIGH-VOLTAGE DIODE	Measure the continuity: (1) Forward Ohmmeter Figure 26-a	Normal readings: continuity. Abnormal reading: Infinite.
	(1) Reverse Figure 26-b	Normal readings: Infinite. Abnormal reading: continuity.

COMPONENTS	TEST PROCEDURES		RESULT	
RELAY2	Check for continuity of relay 2 with an ohm-meter. (Remove wire leads from relay 2 and operate the unit.)	POWER LEVEL		
		1 2	4 sec 6 sec	18 sec 16 sec
	Relay 2	3	8 sec	14 sec
		4	10 sec	12 sec
	-	5	12 sec	10 sec
		6	14 sec	8 sec
	No	7	16 sec	6 sec
	Θ	8	18 sec	4 sec
	Figure 29	9	20 sec	2 sec
		10	22 sec	0
	CAUTION: The relay connector 2 must be correctly connected Relay 2.			

NOTES:

- A MICROWAVE ENERGY TEST MUST ALWAYS BE PERFORMED WHEN THE UNIT IS SERVICED FOR ANY REASON.
- MAKE SURE THE WIRE LEADS ARE IN THE CORRECT POSITION.
- WHEN REMOVING THE WIRE LEADS FROM THE PARTS, BE SURE TO GRASP THE CONNECTOR, NOT THE WIRES.
B. CHECKOUT PROCEDURES
(1) CHECKOUT PROCEDURES FOR FUSE BLOWING

CAUTION: REPLACE BLOWN FUSE WITH 20 AMPERE FUSE.

PROBLEMS	CAUSES
Fuse blows immediately after the door is closed.	Improper operation of the primary interlock, secondary interlock switches and/or the interlock monitor switch.
Fuse blows immediately after the door is opened.	Fuse blows when the door is closed and START key is touched.
Malfunction of the high voltage transformer; the high voltage capacitor including the diode, the magnetron, the blower motor or the circuit board.	

NOTES:

- If the fuse is blown by an improper switch operation, replace the all Interlock switches, PCB Ass'y and the fuse at the same time. After replacing the the all Interlock switches, PCB Ass'y,Fuse with new ones, make sure that they are correctly connected.
- Check for microwave energy leakage according to INTERLOCK ADJUSTMENT PROCEDURES on page 712 when the primary interlock, secondary interlock switches and/or the interlock monitor switches are adjusted or replaced.
(2) CHECKOUT PROCEDURES FOR RELAY.

- PROBLEM (B) -

FAN motor and oven lamp turn on When the door is closed and START key is touched.

(3) CHECKOUT PROCEDURES FOR CIRCUIT

BOARD
The following symptoms indicate a defective circuit board.

1) The start function fails to operate but the high voltage Systems, the interlock switches, the door sensing and the relay check good.
2) The unit with a normal relay continuously operates.
3) Proper temperature measurement is not obtained.
4) The buzzer does not sound or continues to sound.
5) Some segments of one or more digits do not light up, or they continue to light up, or segments light when they should not.
6) Wrong figures appear.
7) The figures of all digits.
8) Some of the indicators do no flicker light up.
9) The clock does not keep time properly.

NOTE: A MICROWAVE ENERGY LEAKAGE TEST MUST ALWAYS BE PERFORMED WHEN THE UNIT IS SERVICED FOR ANY REASON.
C. TROUBLE SHOOTING
Before following this troubleshooting read "TRIAL OPERATION" on page 6-1.
fU "DISPLAY" " Problems, "A" thru "C"
fU "HELP UP" Problems, "D" thru "E" \quad " "BUZZER Problems, "F"

EXPLODED VIEW DOOR PARTS

CONTROLLER PARTS

OVEN CAVITY PARTS

LATCH BOARD PARTS

INTERIOR PARTS (I)

INTERIOR PARTS (II)

INSTALLATION PARTS

SCHEMATIC DIAGRAM OF P.C.B

PRINTED CIRCUIT BOARD

P.C.B PARTS LIST

$\begin{gathered} \hline \text { LOC. } \\ \text { NO. } \end{gathered}$	PART NO.	DESCRIPTION	SPECIFICATION	SVC	ALTER
AR1	0RZ4702G610	RESISTOR,ARRAY	SMART 47KOHM 5\% 8-	R	
BZ1	6908W3YA01A	BUZZER,PIEZO CERAMIC	GPB-B-26B2.1ES(EXTERNAL)	R	
C01	0CK1040K518	CAPACITOR,CERAMIC (HIGH DIELEC	0.1000 UF 50V K B TA26	R	
C02	OCE4771J610	CAPACITOR,AL.ELECTROLYTIC	470UF SM 35V M FL BULK	R	
C03	OCE4771H638	CAPACITOR,AL.ELECTROLYTIC	470UF SM 25V M FM5 TP5	R	
C04	OCE4761K638	CAPACITOR,AL.ELECTROLYTIC	47UF SM,SA 50V M FM5 TP 5	R	
C05	0CK2230H518	CAPACITOR,CERAMIC (HIGH DIELEC	0.0220UF 25V K B TA26	R	
C06	0CH1104H566	CAPACITOR,CHIP[CERAMIC M/L HD	100000F 25V K X7R(X) 2012 R/TP	R	
C09	OCE1071K638	CAPACITOR,AL.ELECTROLYTIC	100UF SM 50V M FM5 TP5	R	
C10	OCE1061K638	CAPACITOR,AL.ELECTROLYTIC	10M SM 50V TP(5)	R	
C20	OCK2230H518	CAPACITOR,CERAMIC (HIGH DIELEC	0.0220UF 25V K B TA26	R	
C21	0CH1223K566	CAPACITOR,CHIP[CERAMIC M/L HD	0.022UF 50V K X7R (X) 2012 R/TP	R	
C25	OCH1223K566	CAPACITOR,CHIP[CERAMIC M/L HD	0.022UF 50V K X7R(X) 2012 R/TP	R	
C80	0CH1221K566	CAPACITOR,CHIP[CERAMIC M/L HD F/S]	220PF 50V K X 2.0X1.2 R/TP	R	
C81	0CH1221K566	CAPACITOR,CHIP[CERAMIC M/L HD F/S]	220PF 50V K X 2.0X1.2 R/TP	R	
C82	0CH1221K566	CAPACITOR,CHIP[CERAMIC M/L HD F/S]	220PF 50V K X 2.0X1.2 R/TP	R	
C83	0CH1221K566	CAPACITOR,CHIP[CERAMIC M/L HD F/S]	220PF 50V K X 2.0X1.2 R/TP	R	
C84	0CH1221K566	CAPACITOR,CHIP[CERAMIC M/L HD F/S]	220PF 50V K X 2.0X1.2 R/TP	R	
CN	6630W5B001A	CONNECTOR (CIRC),BOARD TO BOARD	YZW 100 YEONHO 20PIN 1.0MM STRAIGHT SNPB	R	
CN1	6630W5YA12C	CONNECTOR (CIRC),WAFER	YEON HO YW396-07AV 2,4,6 VOID	R	
CN2	CQ52212A	CONNECTOR (CIRC),WAFER	YW396-03,\#2 VOID	R	6630W5V004A
CN3	6630W5YA19E	CONNECTOR (CIRC),WAFER	FCZ254-13D	R	6630W5V017D
CR1	6212JB8001A	RESONATOR	CSTS0800MG03-T2 MURATA 8MHZ	R	
D01	ODD400209AA	DIODE,RECTIFIER	1N4002 TP PYUNG CHANG	R	
D02	0DD400209AA	DIODE,RECTIFIER	1N4002 TP PYUNG CHANG	R	
D03	0DD400209AA	DIODE,RECTIFIER	1N4002 TP PYUNG CHANG	R	
D05	ODD400209AA	DIODE,RECTIFIER	1N4002 TP PYUNG CHANG	R	
D20	0DD414809AA	DIODE,SWITCHING	1N4148 26MM	R	
D25	ODD414809AA	DIODE,SWITCHING	1N4148 26MM	R	
D26	ODD414809AA	DIODE,SWITCHING	1N4148 26MM	R	
D30	0DS414809AB	DIODE,SWITCHING	RLS4148 TP ROHM LLDS(LL-34) 75	R	
D31	ODD414809AA	DIODE,SWITCHING	1N4148 26MM	R	
D32	ODS414809AB	DIODE,SWITCHING	RLS4148 TP ROHM LLDS(LL-34) 75	R	
D33	ODD414809AA	DIODE,SWITCHING	1N4148 26MM	R	
D34	ODD414809AA	DIODE,SWITCHING	1N4148 26MM	R	
D35	ODD414809AA	DIODE,SWITCHING	1N4148 26MM	R	
D36	0DS414809AB	DIODE,SWITCHING	RLS4148 TP ROHM LLDS(LL-34) 75	R	
D38	ODD400409AA	DIODE,RECTIFIER	1N4004TA TP KEC	R	
DP1	6304W5A003A	LCD(LIQUID CRYSTAL DISPLAY)	MI7 LCD 2COLOR 2LINE	R	
HD1	4930W2A005A	HOLDER,[LED,LCD DIGITRON HOLDER]	MV-174DC, WHITE, ABS	R	
J204	ORH0000L622	RESISTOR,CHIP	0 OHM 1 / 8 W 2012 5\% D R/TP	R	
LED01	ODLZW5A010A	LED	SLS-NNYG101TS TP SAMSUNG YELLOW-GREEN 35	R	
LED02	ODLZW5A010A	LED	SLS-NNYG101TS TP SAMSUNG YELLOW-GREEN 35	R	
LED03	ODLZW5A010A	LED	SLS-NNYG101TS TP SAMSUNG YELLOW-GREEN 35	R	
LED04	ODLZW5A010A	LED	SLS-NNYG101TS TP SAMSUNG YELLOW-GREEN 35	R	
LED05	ODLZW5A010A	LED	SLS-NNYG101TS TP SAMSUNG YELLOW-GREEN 35	R	
LED06	ODLZW5A010A	LED	SLS-NNYG101TS TP SAMSUNG YELLOW-GREEN 35	R	
LED07	ODLZW5A010A	LED	SLS-NNYG101TS TP SAMSUNG YELLOW-GREEN 35	R	
LED08	ODLZW5A010A	LED	SLS-NNYG101TS TP SAMSUNG YELLOW-GREEN 35	R	
LED09	ODLZW5A010A	LED	SLS-NNYG101TS TP SAMSUNG YELLOW-GREEN 35	R	
LED10	ODLZW5A010A	LED	SLS-NNYG101TS TP SAMSUNG YELLOW-GREEN 35	R	
LED11	ODLZW5A010A	LED	SLS-NNYG101TS TP SAMSUNG YELLOW-GREEN 35	R	
LED12	ODLZW5A010A	LED	SLS-NNYG101TS TP SAMSUNG YELLOW-GREEN 35	R	
PT1	6170W2G009A	TRANSFORMER,POWER	120 V 60 HZ 12 V LGECW 400MM MI-7	R	
Q01	OTR101509AB	TRANSISTOR	A1015=KTA12660 KEC O TO-92 TP	R	
Q02	OTR101509AB	TRANSISTOR	A1015=KTA12660 KEC O TO-92 TP	R	
Q120	OTR107009AC	TRANSISTOR	KRA107S-T1(PG)10-47 CHIP KEC	R	
Q121	OTR387509AB	TRANSISTOR	CHIP KTC3875S-Y-T1 (ALY) TP KEC	R	
Q20	OTR107009AD	TRANSISTOR	KRC 107M TP KEC	R	
Q30	OTR101509AB	TRANSISTOR	A1015=KTA12660 KEC O TO-92 TP	R	
Q31	OTR101509AB	TRANSISTOR	A1015=KTA12660 KEC O TO-92 TP	R	
Q32	OTR101509AB	TRANSISTOR	A1015=KTA12660 KEC O TO-92 TP	R	
Q33	OTR101509AB	TRANSISTOR	A1015=KTA12660 KEC O TO-92 TP	R	
Q34	OTR101509AB	TRANSISTOR	A1015=KTA12660 KEC O TO-92 TP	R	

$\begin{aligned} & \hline \text { LOC. } \\ & \text { NO. } \end{aligned}$	PART NO.	DESCRIPTION	SPECIFICATION	SVC	ALTER
Q35	0TR101509AB	TRANSISTOR	A1015=KTA12660 KEC O TO-92 TP	R	
Q36	OTR101509AB	TRANSISTOR	A1015=KTA12660 KEC O TO-92 TP	R	
Q50	0TR107009AC	TRANSISTOR	KRA107S-T1(PG)10-47 CHIP KEC	R	
R01	ORD2001F608	RESISTOR,FIXED CARBON FILM	2K 1/6W 5\% TA26	R	
R02	ORD1001F608	RESISTOR,FIXED CARBON FILM	1.0K 1/6W 5 TA26	R	
R03	0RD1002F608	RESISTOR,FIXED CARBON FILM	10K 1/6W 5 TA26	R	
R04	ORD1001G608	RESISTOR,FIXED CARBON FILM	1K OHM 1/4 W 5\% TA26	R	
R06	ORD0202F608	RESISTOR,FIXED CARBON FILM	20 1/6W 5 TA26	R	
R123	ORH1001L622	RESISTOR,CHIP	1K OHM 1 / 8 W 2012 5\% D R/TP	R	
R124	ORH1002L622	RESISTOR,CHIP	10000 OHM 1 / 8 W 2012 5\% D R/	R	
R125	ORD3000H608	RESISTOR,FIXED CARBON FILM	300J 1/2W 5 TA26	R	
R126	ORD3000H608	RESISTOR,FIXED CARBON FILM	300J 1/2W 5 TA26	R	
R127	ORD3000H608	RESISTOR,FIXED CARBON FILM	300J 1/2W 5 TA26	R	
R129	ORD1001F608	RESISTOR,FIXED CARBON FILM	1.0K 1/6W 5 TA26	R	
R131	ORD4702F608	RESISTOR,FIXED CARBON FILM	47K 1/6W 5 TA26	R	
R133	ORD4702F608	RESISTOR,FIXED CARBON FILM	47K 1/6W 5 TA26	R	
R135	0RD4702F608	RESISTOR,FIXED CARBON FILM	47K 1/6W 5 TA26	R	
R137	0RD4702F608	RESISTOR,FIXED CARBON FILM	47K 1/6W 5 TA26	R	
R139	0RD4702F608	RESISTOR,FIXED CARBON FILM	47K 1/6W 5 TA26	R	
R20	ORD1001G608	RESISTOR,FIXED CARBON FILM	1K OHM 1/4 W 5\% TA26	R	
R21	ORD2202F608	RESISTOR,FIXED CARBON FILM	22K 1/6W 5 TA26	R	
R22	ORH1001L622	RESISTOR,CHIP	1K OHM 1 / 8 W 2012 5\% D R/TP	R	
R25	0RD3901F608	RESISTOR,FIXED CARBON FILM	3.9K 1/6W 5 TA26	R	
R26	0RH1001L622	RESISTOR,CHIP	1K OHM 1 / 8 W 2012 5\% D R/TP	R	
R28	ORD1002G608	RESISTOR,FIXED CARBON FILM	10K OHM 1/4 W 5\% TA26	R	
R29	ORD1001F608	RESISTOR,FIXED CARBON FILM	1.0K 1/6W 5 TA26	R	
R30	ORD1002F608	RESISTOR,FIXED CARBON FILM	10K 1/6W 5 TA26	R	
R31	ORD5601G608	RESISTOR,FIXED CARBON FILM	5.6K 1/4W 5 TA26	R	
R32	0RD1002F608	RESISTOR,FIXED CARBON FILM	10K 1/6W 5 TA26	R	
R33	0RD5601G608	RESISTOR,FIXED CARBON FILM	5.6K 1/4W 5 TA26	R	
R34	0RD1002F608	RESISTOR,FIXED CARBON FILM	10K 1/6W 5 TA26	R	
R35	0RD5601G608	RESISTOR,FIXED CARBON FILM	5.6K 1/4W 5 TA26	R	
R36	0RD1002F608	RESISTOR,FIXED CARBON FILM	10K 1/6W 5 TA26	R	
R37	0RD5601G608	RESISTOR,FIXED CARBON FILM	5.6K 1/4W 5 TA26	R	
R38	0RD1002F608	RESISTOR,FIXED CARBON FILM	10K 1/6W 5 TA26	R	
R39	0RD5601G608	RESISTOR,FIXED CARBON FILM	5.6K 1/4W 5 TA26	R	
R40	0RD1002F608	RESISTOR,FIXED CARBON FILM	10K 1/6W 5 TA26	R	
R41	ORD5601G608	RESISTOR,FIXED CARBON FILM	5.6K 1/4W 5 TA26	R	
R44	0RD1002F608	RESISTOR,FIXED CARBON FILM	10K 1/6W 5 TA26	R	
R45	0RD5601G608	RESISTOR,FIXED CARBON FILM	5.6K 1/4W 5 TA26	R	
R50	0RH1001L622	RESISTOR,CHIP	1K OHM 1 / 8 W 2012 5\% D R/TP	R	
R51	ORH0000L622	RESISTOR,CHIP	0 OHM 1 / 8 W 2012 5\% D R/TP	R	
R52	0RH1001L622	RESISTOR,CHIP	1K OHM 1 / 8 W 2012 5\% D R/TP	R	
R55	ORD1004F608	RESISTOR,FIXED CARBON FILM	1.0M 1/6W 5 TA26	R	
R80	ORD1001G608	RESISTOR,FIXED CARBON FILM	1K OHM 1/4 W 5\% TA26	R	
R81	0RD1001G608	RESISTOR,FIXED CARBON FILM	1K OHM 1/4 W 5\% TA26	R	
R82	ORD1001G608	RESISTOR,FIXED CARBON FILM	1K OHM 1/4 W 5\% TA26	R	
R83	0RD1001G608	RESISTOR,FIXED CARBON FILM	1K OHM 1/4 W 5\% TA26	R	
R84	ORD1001G608	RESISTOR,FIXED CARBON FILM	1K OHM 1/4 W 5\% TA26	R	
R85	0RD1001G608	RESISTOR,FIXED CARBON FILM	1K OHM 1/4 W 5\% TA26	R	
R86	ORD1001G608	RESISTOR,FIXED CARBON FILM	1K OHM 1/4 W 5\% TA26	R	
R87	0RD1001G608	RESISTOR,FIXED CARBON FILM	1K OHM 1/4 W 5\% TA26	R	
R88	0RD1001F608	RESISTOR,FIXED CARBON FILM	1.0K 1/6W 5 TA26	R	
R89	ORH1001L622	RESISTOR,CHIP	1K OHM 1 / 8 W 2012 5\% D R/TP	R	
R90	0RH1001L622	RESISTOR,CHIP	1K OHM 1 / 8 W 2012 5\% D R/TP	R	
R91	ORH1001L622	RESISTOR,CHIP	1K OHM 1 / 8 W 2012 5\% D R/TP	R	
R92	0RH1001L622	RESISTOR,CHIP	1K OHM 1 / 8 W 2012 5\% D R/TP	R	
RY1	6920W5A008A	RELAY	DQ1U DAIICHI DC12V DC16.7MA DC	R	6920W2D010A
RY11	6920W5A005A	RELAY	VE-12HE-K TAKAMISAWA 12V 0.03A	R	
RY12	6920W5A008A	RELAY	DQ1U DAIICHI DC12V DC16.7MA DC	R	6920W2D010A
RY14	6920W5A008A	RELAY	DQ1U DAIICHI DC12V DC16.7MA DC	R	6920W2D010A
RY15	6920W5A008A	RELAY	DQ1U DAIICHI DC12V DC16.7MA DC	R	6920W2D010A
RY2	6920W2YD04A	RELAY	OZF-S-112LM1P,DC12V,SPST,OEG	R	
RY6	6920W5A008A	RELAY	DQ1U DAIICHI DC12V DC16.7MA DC	R	6920W2D010A
SH1	6091W3A004A	BACKLIGHT ASSY	2LINE LCD B/L [W70,H39]	R	
U01	6871W2S195A	PWB(PCB) ASSY,[MAIN]	P2-0195 MV-174DC LSI MOUNT 100P	R	
U06	OIKE791500A	IC,KEC	KIA7915PI 3 BK -	R	OISS791500A
ZD1	ODZ510009AE	DIODE,ZENER	UZ5.1BS TP26 SM 0.5W	R	

(1) LG Electronics Inc.

